'/> Kumpulan Rumus Cepat Invers Fungsi Dilengkapi Contoh -->

Info Populer 2022

Kumpulan Rumus Cepat Invers Fungsi Dilengkapi Contoh

Kumpulan Rumus Cepat Invers Fungsi Dilengkapi Contoh
Kumpulan Rumus Cepat Invers Fungsi Dilengkapi Contoh
.com - Rumus Mudah Invers Fungsi. Secara sederhana, invers sanggup diartikan sebagai kebalikan. Operasi invers biasanya disimbolkan dengan penggunaan tanda negatif satu pada fungsinya misal f-1(x). Jika f-1(x) ialah invers dari fungsi f(x), maka f-1(x) = f(y). Invers suatu fungsi belum tentu berbentuk fungsi. Jika invers dari suatu fungsi berbentuk fungsi juga, maka fungsi tersebut disebut sebagai fungsi invers. Selain itu, sebuah invers fungsi sanggup dikatakan sebagai fungsi invers jikalau fungsi tersebut merupakan fungsi bijektif atau fungsi yang berkorespondensi satu-satu. Pada kesempatan ini, edutafsi akan membahas beberapa rumus simpel yang sanggup dipakai untuk menuntaskan beberapa model soal wacana invers fungsi.

A. Invers Fungsi Bentuk Linear

Misal dimemberikan sebuah fungsi bijektif dari himpunan A ke himpunan B, yaitu fungsi f. Jika peta dari x oleh fungsi f ialah y, maka fungsi f tersebut sanggup dirumuskan sebagai f(x) = y. Jika f-1 merupakan invers dari fungsi f, maka peta dari y oleh fungsi f-1 ialah x sehingga sanggup ditulis f-1(y) = x. Secara umum, invers dari suatu fungsi f sanggup ditentukan dengan langkah memberikankut:
1). Dimisalkan f(x) = y
2). Dinyatakan x sebagai fungsi y (dinyatakan dalam variabel y)
3). Dinyatakan x sebagai fungsi f-1(y)
4). Diubah y pada f-1(y) menjadi x sehingga diperoleh f-1(x).

Bentuk fungsi yang paling sederhana dalam pembahasan invers ialah fungsi yang berbentuk linear. Kebalikan atau invers dari sebuah fungsi yang berbentuk linear bantu-membantu sanggup diselesaikan dengan memperringan dan sepele tanpa harus memakai rumus alasannya ialah masih sederhana. Meski begitu, tidak ada salahnya juga memakai rumus praktis.

Fungsi linear ialah sebuah fungsi yang mempunyai dua atau lebih variabel yang masing-masing penilaiannya saling mempengaruhi dan pangkat tertinggi dari variabel bebasnya ialah satu. Jika fungsi berbentuk linear dinyatakan sebagai f(x) = ax + b, maka invers dari fungsi tersebut sanggup ditentukan menurut rumus simpel memberikankut ini.

Fungsi berbentuk linear:
f(x) = ax + b

Invers fungsinya adalah:
f-1(x) = (x − b)/a

Contoh :
Jika dimemberikan fungsi f(x) = 4x + 7, maka tentukanlah invers dari fungsi tersebut.

Pembahasan :
Dik : f(x) = 4x + 7, a = 4, b = 7
Dit : f-1(x) = .... ?

Menggunakan cara biasa :
⇒ f(x) = 4x + 7
⇒ y = 4x + 7
⇒ y - 7 = 4x
⇒ 4x = y - 7
⇒ x = (y - 7)/4
⇒ f-1(x) = (x − 7)/4

Menggunakan cara simpel :
⇒ f-1(x) = (x − b)/a
⇒ f-1(x) = (x − 7)/4

Jadi, invers dari fungsi f(x) = 4x + 7 ialah f-1(x) = (x − 7)/4. Perhatikan bahwa dengan rumus simpel di atas, kita sanggup menghemat waktu beberapa detik atau bahkan menit.

B. Rumus Fungsi Invers Bentuk Pecahan

Fungsi memberikankutnya ialah fungsi berbentuk pecahan. Sama menyerupai fungsi linear, pada fungsi pecahan ini pangkat tertingginya juga satu. Jika dilihat bentuknya, maka fungsi pecahan ini sanggup dibilanga sebagai fungsi pembagian dari dua bentuk linear.

Fungsi berbentuk pecahan :
f(x) = ax + b
cx + d

Invers fungsinya ialah :
f-1(x) = -dx + b
cx − a

Contoh :
Dimemberikankan sebuah fungsi f(x) = (2x + 5)/(3x - 2). Tentukanlah invers dari fungsi tersebut.

Pembahasan :
Dik : a = 2, b = 5, c = 3, d = -2
Dit : f-1(x) = ... ?

Menggunakan cara biasa :
⇒ f(x) = (2x + 5)/(3x - 2)
⇒ y =  (2x + 5)/(3x - 2)
⇒ y(3x - 2) = 2x + 5
⇒ 3xy - 2y = 2x + 5
⇒ 3xy - 2x = 2y + 5
⇒ x(3y - 2) = 2y + 5
⇒ x = (2y + 5)/(3y - 2)
⇒ f-1(x) = (2x + 5)/(3x - 2)

Menggunakan cara simpel :
⇒ f-1(x) = (-dx + b)/(cx - a)
⇒ f-1(x) = {-(-2)x + 5}/(3x - 2)
⇒ f-1(x) = (2x + 5)/(3x - 2)

Jadi, invers dari fungsi tersebut ialah f-1(x) = (2x + 5)/(3x - 2). Rumus ini cukup membantu menghemat waktu ketika menghadapi ujian. Jika di dalam opsi tpendapatan belum ada tpendapatan yang sesuai, maka lawankan tiruana tandanya.

C. Invers Fungsi Bentuk Akar Pangkat

Bentuk fungsi memberikankutnya yang sudah mulai tidak ringan dan sepele ialah fungsi bentuk akar pangkat. Sesuai dengan namanya, fungsi ini mengandung akar pangkat sebesar pangkat n. Fungsi akar pangkat ini juga sering ditulis dalam bentuk pangkat pecahan.

Fungsi berbentuk akar pangkat :
f(x) = nax + b

Invers fungsinya ialah :
f-1(x) = xn − b
a

Contoh :
Tentukanlah invers dari fungsi memberikankut : f(x) = (3x + 7)1/6.

Pembahasan :
Fungsi di atas sanggup diubah bentuknya menjadi f(x) = 63x + 7
Dik : n = 6, a = 3, b = 7
Dit : f-1(x) = .... ?

Menggunakan cara biasa :
⇒ f(x) = (3x + 7)1/6
⇒ y = (3x + 7)1/6
⇒ y6 = 3x + 7
⇒ 3x = y6 - 7
⇒ x = (y6 - 7)/3
⇒ f-1(x) = (x6 − 7)/3

Menggunakan cara cepat :
⇒ f-1(x) = (xn − b)/a
⇒ f-1(x) = (x6 − 7)/3

Jadi, invers dari fungsi tersebut ialah f-1(x) = (x6 − 7)/3. Dengan rumus simpel ini kita sanggup melewati beberapa langkah sehingga lebih ekonomis waktu. Hanya saja, lantaran setiap kasus beda rumus maka harus banyak menghapal.

D. Invers Fungsi Bentuk Eksponen

Fungsi memberikankutnya ialah dungsi berbentu eksponen. Fungsi bentuk eksponen merupakan fungsi yang mengandung bilangan berpangkat. Invers dari fungsi bentuk pangkat ialah fungsi dalam bentuk logaritma.

Fungsi bentuk eksponen :
f(x) = anx

Invers fungsinya ialah :
f-1 = alog x1/n

Contoh :
Jika dimemberikankan sebuah fungsi f(x) = 54x, maka tentukanlah invers dari fungsi tersebut.

Pembahasan :
Dik : a = 5, n = 4
Dit : f-1(x) = .... ?

Menggunakan cara biasa :
⇒ f(x) = 54x
⇒ y = 54x
⇒ log y = log 54x
⇒ log y = 4x log 5
⇒ 4x = (log y)/(log 5)
⇒ x = ¼ . (log y)/(log 5)

Ingat kembali konsep logaritma. Karena (nlog b)/(nlog a) = alog b, maka (log y)/(log 5) = 5log y. Dengan demikian, persamaan di atas menjadi :
⇒ x = ¼ . 5log y
⇒ x = 5log y1/4
⇒ f-1(x) = 5log x1/4

Menggunakan cara simpel :
⇒ f-1(x) = alog x1/n
⇒ f-1(x) = 5log x1/4

Jadi, invers dari fungsi tersebut ialah f-1(x) = 5log x1/4 atau f-1(x) = 5log 4x.

E. Rumus Invers untuk Fungsi Kuadrat

Selanjutnya yang juga sanggup diselesaikan memakai rumus simpel ialah invers untuk fungsi yang berbentuk fungsi kuadrat. Fungsi kuadrat tentu sudah tidak asing, ditandai dengan variabel yang mempunyai pangkat kuadrat.

Bentuk umum fungsi kuadrat :
f(x) = ax2 + bx + c

Invers fungsinya ialah :
f-1(x) = ± √1/a (x + D/4a) − b/2a

Contoh :
Tentukanlah invers dari fungsi f(x) = x2 + 4x - 4.

Pembahasan :
Dik : a = 1, b = 4, c = -4
Dit : f-1(x) = .... ?

Menggunakan cara biasa :
⇒ f(x) = x2 + 4x - 4
⇒ y = x2 + 4x - 4
⇒ y - 8 = x2 + 4x - 4 - 8
⇒ y = (x + 2)2 - 8
⇒ y + 8 = (x + 2)2
⇒ (y + 8)½ = {(x + 2)2}½
⇒ √y + 8 = x + 2
⇒ x = √y + 8 − 2
⇒ f-1(x) = √x + 8 − 2

Nilai diskriminan :
⇒ D = b2 - 4ac = 42 - 4.1.(-4)
⇒ D = 32

Menggunakan rumus simpel :
⇒ f-1(x) = √1/a (x + D/4a) − b/2a
⇒ f-1(x) = √1/1 (x + 32/4.1) − 4/2.1
⇒ f-1(x) = √x + 8) − 2

Jadi, invers dari fungsi kuadrat tersebut ialah f-1(x) = √x + 8) − 2.

 invers sanggup diartikan sebagai kebalikan KUMPULAN RUMUS CEPAT INVERS FUNGSI DILENGKAPI CONTOH

Demikianlah kumpulan rumus simpel untuk fungsi invers yang sanggup edutafsi bagikan. Perlu diperhatikan bahwa penggunaan rumus simpel sangat terbatas alasannya ialah hanya sanggup dipakai jikalau syarat atau kondisinya terpenuhi. Ada baiknya pelajar dan siswa juga memahami konsep dasarnya semoga tidak terlalu terpaku pada rumus cepat.
Advertisement

Iklan Sidebar